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Abstract: Optical coherence tomography (OCT) is a commonly used ophthalmic imaging
modality. While OCT has traditionally been viewed cross-sectionally (i.e., as a sequence of
B-scans), higher A-scan rates have increased interest in en face OCT visualization and analysis.
The recent clinical introduction of OCT angiography (OCTA) has further spurred this interest,
with chorioretinal OCTA being predominantly displayed via en face projections. Although
en face visualization and quantitation are natural for many retinal features (e.g., drusen and
vasculature), it requires segmentation. Because manual segmentation of volumetric OCT data
is prohibitively laborious in many settings, there has been significant research and commercial
interest in developing automatic segmentation algorithms. While these algorithms have achieved
impressive results, the variability of image qualities and the variety of ocular pathologies cause
even the most robust automatic segmentation algorithms to err. In this study, we develop a user-
assisted segmentation approach, complementary to fully-automatic methods, wherein correction
propagation is used to reduce the burden of manually correcting automatic segmentations. The
approach is evaluated for Bruch’s membrane segmentation in eyes with advanced age-related
macular degeneration.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is a standard imaging modality in ophthalmology, where
it is used for disease detection as well as for monitoring progression and treatment response.
Ophthalmic OCT is typically acquired using a raster protocol, wherein a set of B-scans is
sequentially collected at different positions on the retina to form an OCT volume. In clinical
practice, OCT volumes have traditionally been viewed on a B-scan basis by scrolling through the
2-D cross-sections that comprise the volume. However, increases in A-scan rates have enabled
denser, isotropic A-scan sampling, which, in turn, has increased the practicality of en face OCT
visualization, wherein 2-D transverse planes or slabs/projections are viewed. Compared to B-scan
approaches, there are several advantages of en face viewing and analysis: the transverse extent
and spatial distribution of lesions (e.g., drusen) is naturally captured; specific retinal layers can
be summarized in a single image, thus enabling rapid review; and disruptions in normal retinal
anatomy can be detected by discontinuities in en face data (e.g., drusen-related elevations of the
retinal pigment epithelium [RPE]). More recently, en face visualization has become increasing
important in the clinical context of visualizing OCT angiography (OCTA) data [1,2], because the
chorioretinal microvasculature is largely oriented along en face surfaces.
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While en face analysis can be performed by simply extracting a slab that is perpendicular to
the OCT beam, it is often desirable to use a modified slab that follows one or more retinal layers.
Extracting such layer-fitted slabs requires segmentation, which is complicated by the natural
retinal curvature, retinal layer variations, and distortions introduced by pathology. Thus, retinal
layer segmentation a critical prerequisite for en face OCT/OCTA visualization and quantitation.
Related work for retinal layer segmentation can be roughly partitioned into three approaches.

Graph-based approaches either construct a weighted graph and search for the shortest path [3,4]
or approximate a surface by optimizing a cost function [5,6]. Model-based approaches use prior
shape knowledge and adapt [7,8] or iteratively calculate [9] boundary shapes. Learning-based
approaches classify retinal layers by using expert input or hand-crafted features [10,11], or by
using end-to-end training schemes such as deep learning [12] to receive boundary segmentations
[13–19].
Although automatic layer segmentation algorithms have achieved impressive results, manual

segmentation remains the gold standard, particularly for the mentioned layers and in the presence
of severe pathology. Unfortunately, manual segmentation, which is typically performed on a
B-scan basis, is prohibitively time consuming, with OCT volumes often being comprised of
hundreds of B-scans. Rather than using an entirely automatic or manual approach, this paper
develops a general, user-assisted segmentation framework with the aim of reducing—rather
than eliminating—user input [20]. This paper is conceptually divided into two parts. First,
we present the general framework for user-assisted segmentation and describe the principles
of correction propagation, its key element. Second, we develop and evaluate a particular
instantiation of the framework applied to segmentation of Bruch’s membrane in eyes with
advanced age-related macular degeneration (AMD)—in particular, geographic atrophy (GA) and
choroidal neovascularization (CNV).

2. General framework and correction propagation

2.1. General framework

The proposed user-assisted segmentation framework follows the general workflow presented in
Fig. 1. With reference to this figure, the framework consists of three modules: in the first module,
the OCT volume is automatically segmented; in the second module, the user identifies regions
wherein the automatic segmentation is insufficiently accurate and corrects a subset of B-scans
within these regions; and, in the third module, the user corrections are propagated to the other
regions of the volume. Note that each of the modules is relatively independent of the particular
implementations of the other modules, thus allowing for flexible and extensible usage.

Fig. 1. Our user-assisted segmentation framework is comprised of three modules: (1) initial
automatic segmentation; (2) manual correction of segmentation errors over a subset of the
volume; and (3) propagation of the segmentation corrections to other regions of the volume.
The framework is designed so that each module is relatively independent of the particular
implementations of the other modules.

The advantage of the proposed user-assisted segmentation framework is that, through the
judicious usage of manual segmentation, correction propagation can greatly reduce the time
needed to achieve volumetric segmentations with accuracies approaching those achieved with
fully-manual segmentation.
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The central component of our user-assisted segmentation framework is the correction propaga-
tion step, wherein a partial manual correction is automatically propagated to other uncorrected
regions of the volume. While there are many approaches to correction propagation, there are
common specifications and functionalities, which we review briefly below.

2.2. Interpolation versus re-segmentation

Correction propagation schemes can be roughly divided into interpolation (inpainting) schemes
and re-segmentation schemes. Interpolation schemes perform propagation by interpolating
user-corrected segmentations to uncorrected portions of the volume, and can range from simple
spline fitting, to partial differential equation based methods (e.g., Laplacian interpolation), to
deep-learning approaches. In contrast, re-segmentation schemes re-segment the uncorrected
volumes by using the user-corrected segmentations to inform the re-segmentation; for example,
by establishing internal boundary conditions to reduce the solution space. Interpolation schemes
have the advantage that they typically perform well when the boundary to be segmented is
slowly varying (along the direction of propagation) relative to the density of user-corrected
segmentations. Moreover, interpolation approaches will typically converge to the true boundary
in a predictable manner as the density of user-corrected segmentations increases. A disadvantage
is that, for boundaries with rapid spatial variations (e.g., elevations of the RPE in the presence
of drusen), interpolation approaches may require prohibitively dense user-corrections. In
contrast, re-segmentation approaches can naturally accommodate rapid spatial variations, but
may perform poorly when the boundary being segmented is not well visualized (e.g., in cases
where the boundary is not visible due to low OCT signal). Of course, hybrid schemes combining
interpolation and re-segmentation can be used to balance these advantages and disadvantages.

2.3. Domain of correction propagation

In general, if the domain of correction propagation is the entire OCT volume, corrections made
to a small sub-region of the volume can influence segmentations at all other locations within
the volume. While there are situations in which such unconstrained propagation is desirable,
it risks creating a “Whac-a-mole” scenario wherein correction propagation generates errors in
previously error-free regions. To avoid this, a domain of correction (e.g., a rectangular region)
can be specified; outside of this domain, correction propagation either does not occur, or occurs
with tighter constraints. The approach of explicitly specifying a domain of correction works well
when there are only a few regions that require correction. For numerous, spatially distributed
regions of correction, explicitly specifying multiple domains of correction can become overly
laborious. This point is elaborated upon in the Discussion section of this paper.

3. User-assisted pipeline for Bruch’s membrane segmentation using graph-cut-
based correction propagation

In the sections below, we describe a user-assisted correction propagation scheme for segmenting
Bruch’s membrane, the penta-layered structure situated between the choriocapillaris and the RPE.
For reference, in normal eyes the RPE-to-choriocapillaris distance is ∼20 µm, as measured with
OCT, and Bruch’s membrane thickness is 2 µm− 5 µm, as measured with light microscopy [21,22].
Bruch’s membrane segmentation arises in several contexts, including in OCTA-based assessment
of the choriocapillaris. The details of our segmentation algorithm are provided in the sections
below. Accompanying code is available at https://github.com/MIT-BOIB/CorrectionPropagation/,
and mathematical notation is summarized in Table 2 of Appendix I.
To facilitate discussion, we introduce an orthogonal coordinate system (eP, eA, eB), where eP

points along increasing pixel index (i.e., along the anterior-to-posterior axis); eA points along
increasing A-scan index (i.e., along one of the transverse directions), and eB points along the
direction of increasing B-scan index (i.e., along the other, orthogonal, transverse direction). We

https://github.com/MIT-BOIB/CorrectionPropagation/
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assume that the input is a motion-corrected OCT volume V : D → [0, 1], whereD = I ×J ×K .
Here, I = {0, . . . ,NP − 1}, J = {0, . . . ,NA − 1}, andK = {0, . . . ,NB − 1}, where NP, NA, and
NB are the number of pixels per A-scan, the number of A-scans per B-scan, and the number
of B-scans per volume, respectively. In this notation, V(i, j, k) = Vi,j,k denotes the value of the
i-th pixel of the j-th A-scan of the k-th B-scan, the restriction V|K={k} denotes the k-th OCT
cross-section along the eA axis, and the restriction V|J={j} denotes the j-th OCT cross-section
along the eB axis. Because the optimal parameter values for our algorithm depend on the
OCT instrument and imaging specifications (e.g., axial and transverse resolutions, sampling
densities, and data up-sampling), in the following, the algorithm is presented with a variable
parameterization. The particular parameter values used in this study are provided in Appendix II.

3.1. Module 1: automatic segmentation

The initial automatic layer segmentation is composed of (1) an optimized B-scan graph-cut
algorithm, similar to that presented in Chiu et al. [4], which is used to segment the RPE, and (2)
a Bruch’s membrane approximation algorithm, which estimates the Bruch’s membrane position
from the segmented RPE. The algorithmic details are described below.

3.1.1. Flattening OCT B-scans relative to the RPE

B-scan graph-cut methods minimize the traversed path across the B-scan (i.e., along the eA
direction) and are therefore sensitive to the curvature of the retina (as it appears on the OCT
B-scan), which is attributable to both the physiological retinal curvature and to differences in
optical pathlengths. To mitigate this sensitivity, we “flatten” the B-scans to remove bulk retinal
curvature. First, each B-scan is denoised with an anisotropic Gaussian filter with standard
deviations (σfi ,σfj ). Then, for the center B-scan, V|K={c}, with c = b(NB − 1)/2c, the axial
position of the RPE, which is assumed to be the brightest layer, is estimated for each A-scan as
the position of the pixel having the maximal value along that A-scan. Next, random sampling
consensus (RANSAC) [23] is used to fit a polynomial γc

eA of degree d through the set of identified
pixel positions (i.e., the presumptive RPE position). Finally, all A-scans of V|K={c} are axially
shifted to place the RPE contour at the middle axial pixel position. In particular, the j-th A-scan
is axially shifted by an amount γc

eA (j) − b(NP − 1)/2c.
With the central B-scan flattened, the algorithm proceeds in a bidirectional, multi-threaded

march along the +eB and −eB directions to higher and lower indexed B-scans, respectively.
Assuming relative continuity in the eB direction—which is a valid assumption under the
specification that the input volume is motion-corrected—the search for the brightest layer is
constrained by the fitted RPE position of its neighboring B-scan. In particular, the search set for
the RPE in the j-th A-scan of the (c ± n)-th B-scan is

{
γ

c±(n−1)
eA (j) − ∆eA , . . . , γ

c±(n−1)
eA (j) + ∆eA

}
,

where ∆eA is the half-size of the search space.
Note that with the proposed flattening scheme, the RPE must show maximum values in more

than 50% of the initially flattened central B-scan pixels. In cases where the retinal nerve fiber
layer shows widespread maximum pixels along A-scan directions, the initially flattened B-scan
should be manually adapted to a different section. Our framework provides functionality to test
and adapt the flattening procedure.

3.1.2. Automatic RPE segmentation via graph-cut

After flattening V, we perform a B-scan-wise RPE segmentation along the eA axis by using
the graph-cut approach [4,24,25]. Briefly, the graph-cut approach works by constructing, for
each B-scan V|K={k}, a graph wherein there is one graph vertex for each pixel of the image.
Vertices of neighboring pixels are connected, and the edge weights are derived from OCT B-scan
information. The graph is then traversed by finding the shortest (weighted) path that connects
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one side of the B-scan to the other side of the B-scan. We define the graph used to segment the
RPE of the k-th B-scan, V|K={k}, as the ordered triple GRPE

k =
(
PRPE

k , ERPEk ,wRPE
k

)
, where PRPE

k
is the set of points/vertices (this set is typically denoted asV, but we avoid this notation because
V has already been used to denote the OCT volume), ERPEk ⊂ PRPE

k × PRPE
k is the set of edges,

and wRPE : ERPEk → R+ ∪ {+∞} is the edge-weight function. In particular, we let:

PRPE
k =

{
pi,j

�� (i, j) ∈ I × J }
(1)

ERPEk =
⋃

(i,j)∈I×J
NRPE (

pi,j
)

(2)

where pi,j ∈ P
RPE
k is the point corresponding to the volume element Vi,j,k and NRPE(pi,j) is the

set of edges defined by:

NRPE(pi,j)) =
{(

pi,j, pi−1,j+1
)}
∪

{(
pi,j, pi,j+1

)}
∪

{(
pi,j, pi+1,j+1

)}
(3)

For RPE segmentation, we compute the edge-weights by using the OCT B-scan intensities, rather
than using the OCT B-scan gradients, as done in Chiu et al. [4]. Specifically, each OCT B-scan
V|K={k} is bilaterally filtered, thus resulting in filtered volume VRPE. Bilateral filtering weights
the distance of pixels (σs) as well their intensity information (σr), thus maintaining edges while
smoothing non-edges [26]. The graph weights are then computed as:

wRPE
k

(
ei,j,m,n

)
= exp

[
2 −

(
VRPE(i, j, k) + VRPE(m, n, k)

)
+ ε

]
(4)

where ei,j,m,n ∈ E
RPE is the edge between graph vertices pi,j and pm,n, with pi,j, pm,n ∈ P

RPE
k . Here,

ε denotes a small-valued bias, the addition of which ensures that the graph weights are strictly
positive. The exponential weighting scheme is used to prevent shortcuts through pathological
features—such as drusen—that cause geometric distortions in the RPE. The shortest path is
computed by using Dijkstra’s algorithm, thus yielding the automatic RPE segmentation of the
flattened volume SRPE,f : J ×K → I. A representative RPE segmentation is shown in Fig. 2.

Fig. 2. Example of fully-automatic segmentation of the RPE and Bruch’s membrane in an
OCT B-scan that intersects a CNV lesion. Note that, for clarity, the segmentation lines and
B-scan are shown in their natural (unflattened) coordinate frames. In B-scans such as this
one, where the RPE becomes separated from Bruch’s membrane, the automatic Bruch’s
membrane segmentation can be anteriorly shifted from the true Bruch’s membrane position
(turquoise arrows).

3.1.3. Automatic Bruch’s membrane segmentation via RPE relaxation

We compute a Bruch’s membrane segmentation by iterative relaxation of the RPE segmentation,
SRPE,f , a process that achieves results similar to a convex hull approach [27]. The pseudo-code
for the iterative relaxation is presented in Alg. 1 (Appendix III), with the key computations
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occurring in lines 7 and 8. In line 7, the current Bruch’s membrane segmentation is smoothed by
using a mean filter of width hm, thereby flattening elevated sections of the RPE. In line 8, the
maximum of the shifted RPE segmentation and the current Bruch’s membrane segmentation is
computed, thereby ensuring that the Bruch’s membrane segmentation does not move anterior to
the shifted RPE position. The mean filtering and maximum operations are iteratively performed
until steady state or a specified maximum number of iterations. After, the estimated Bruch’s
membrane position is posteriorly shifted by ∆BM to account for the RPE segmentation running
through the center of the RPE, rather than along its basement membrane. The result is an
automatic Bruch’s membrane segmentation SBM,f of the flattened volume (Fig. 2).

3.2. Module 2: manual correction

3.2.1. Domain of correction propagation and manual correction

After volumetrically inspecting the quality of the automatic Bruch’s membrane segmentation,
SBM,f , the user draws a 2-D bounding box on the eA × eB plane (Fig. 3). This selection defines
a restricted sub-domain, DR̃, with D ⊇ DR̃ = I × JR × KR. The ∼ of R̃ indicates that the
domain is only partially restricted—namely, along the transverse, but not axial, directions.
Here, J ⊇ JR = {n` , . . . , nr}, where n` ≤ nr are the indices of the left and right sides of
the restricted domain, respectively (i.e., the sides of the restricted domain parallel to the eB
axis); K ⊇ KR = {nb, . . . , nt} where nb ≤ nt are the indices of the bottom and top sides of the
restricted domain, respectively (i.e., the sides of the restricted domain parallel to the eA axis).
The segmentation labels for all border pixels of the sub-domain DR̃ are assumed to be correct.

Fig. 3. Example of user-assisted segmentation correction within a restricted domain, for the
same case as in Fig. 2. (Left panel) En face OCT plane, cropped from a larger field-of-view,
that intersects a region of CNV. (Right panel) OCT B-scan, extracted from the en face
OCT plane, also intersecting the region of CNV. Note that, for clarity, the segmentation
lines and B-scan are shown in their natural (unflattened) coordinate frames. The teal
contour corresponds to the automatically segmented internal limiting membrane; the orange
contour corresponds to the automatically segmented RPE; the red contour corresponds
to the automatically segmented Bruch’s membrane; and the dashed, light-green contour
corresponds to the corrected Bruch’s membrane segmentation. The domain of correction,
DR̃, is indicated by the dark-green dashed box in the left panel, the sides of which correspond
to the vertical dark-green dashed lines in the OCT B-scan of the right panel. In this example,
three OCT B-scans are corrected. Note that the B-scans are only corrected within DR̃.

With the restricted domain defined, the user then proceeds to manually correct a subset
KM ⊆ KR of the B-scans within this restricted domain, thereby creating a partially corrected
segmentation of Bruch’s membrane SC̃BM,f : JR × KM → I.

3.3. Module 3: correction propagation

3.3.1. Constructing a Bruch’s membrane graph

For re-segmentation of Bruch’s membrane, we construct a second graph,
G

BM,R̃
j =

(
P

BM,R̃
j , EBM,R̃

j ,wBM,R̃
j

)
, this time along the eB direction. In particular, we let:

P
BM,R̃
j =

{
pi,k

�� (i, k) ∈ I × KR} (5)
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E
BM,R̃
j =

⋃
(i,k)∈I×KR

NBM,R̃ (
pi,k

)
(6)

where: NBM,R̃(pi,k) is the set of edge vertices defined by:

NBM,R̃(pi,k) =
{(

pi,k, pi−3,k+1
)}
∪

{(
pi,k, pi−2,k+1

)}
∪

{(
pi,k, pi−1,k+1

)}
∪{(

pi,k, pi,k+1
)}
∪

{(
pi,k, pi+1,k+1

)}
∪

{(
pi,k, pi+2,k+1

)
∪

{(
pi,k, pi+3,k+1

)}}
The weights, wBM,R̃

j , are computed using the OCT gradient, rather than the OCT intensity, as was
the case for wRPE

k . This adaption ensures that the shortest path along BM does not incorrectly
pass through the RPE, which has relatively high intensities. In particular, we calculate the
smoothed axial gradient of the volume, VBM, by convolving each OCT B-scan with a kernel
Q : I × J → R:

VBM��
K={k} =

1
2

(
sgn

(
V|K={k} ∗ Q

)
+ 1

)
◦

(
V|K={k} ∗ Q

)
(7)

where sgn denotes the sign (i.e., signum) function, ◦ denotes the Hadamard product (i.e.,
element-wise multiplication), and ∗ denotes convolution. Note that we specify Q so that the
gradient is along the eP direction, and the smoothing is along the eA direction (see Appendix II).
Then, the graph weights are set as:

wBM
j

(
ei,k,m,o

)
= 2 −

(
VBM(i, j, k) + VBM(m, j, o)

)
+ ε (8)

Note that VBM takes values in [0, 1], thus ensuring that the computed graph weights are strictly
positive.

3.3.2. Axial restriction of Bruch’s membrane graph

Before performing the re-segmentation of Bruch’s membrane, we use the manual Bruch’s
membrane segmentation to restrict the graph GBM,R̃

j along the axial dimension, thereby creating

G
BM,R
j =

(
P

BM,R
j , EBM,R

j ,wBM,R
j

)
. In particular,

P
BM,R
j = PBM

j ∩ Bj (9)

Here, Bj is a pixel “band” that straddles the manually segmented A-scans along the j-th OCT
cross-section (along the eB direction). In particular:

Bj =
⋃

k∈KR

T
(
pL(k),k

)
(10)

where L is a linear interpolating function:

L(k) =
⌊
(k − k−(k))

g(k+(k)) − g(k−(k))
k+(k) − k−(k)

+ g(k−(k))
⌉
, (11)

b·e denotes operation of rounding to the nearest integer, g = SC̃BM,f
���
J={j}

and, k−(k) & k+(k)
return the indices of the manually corrected B-scans that straddle the index k:

k−(k) = arg min
k∗∈KM−

k

|k∗ − k| (12)
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k+(k) = arg min
k∗∈KM+

k

|k∗ − k| (13)

where,
K

M−
k =

{
k∗ ∈ KR�� k∗ ≤ k

}
∪ {nb} (14)

K
M+
k =

{
k∗ ∈ KR�� k∗ ≥ k

}
∪ {nt} (15)

and T(pi,k) is a “thickness” function defined as:

T(pi,k) =

{{
pi,k

}
, k ∈ KM

I
∆B

k (pi,k), else
(16)

with
I
∆B

k (pi,k) =
⋃

i∗∈I, |i∗−i | ≤∆B

{
pi∗,k

}
(17)

An illustration of Bj and PBM,R
j for ∆B = 2 is shown in Fig. 4. The edges EBM,R

j and edge

weights wBM,R
j of the restricted graph are formed by restriction of EBM,R̃

j and edge weights wBM,R̃
j

using PBM,R
j . Namely,

E
BM,R
j = E

BM,R̃
j

���
P

BM,R
j

(18)

and
wBM,R

j = wBM,R̃
j

���
E
BM,R
j

(19)

For each j ∈ JR, the shortest paths across GBM,R
j are computed by using Dijkstra’s algorithm,

thus yielding the corrected Bruch’s membrane segmentation on the flattened volume, SCBM,f .
As a final step, the segmentation SCBM,f is “unflattend” by applying the inverse of the flattening
function, thereby yielding SCBM.

Fig. 4. Illustration of Bruch’s membrane restriction. The manually segmented points (k1
and k2) and the border points (nb and nt) act as ‘gates’ through which the shortest path
must pass. Between these points, the graph is restricted to the band Bj with thickness ∆B
(here: ∆B = 2). Bj is constructed via linear interpolation between the manual inputs and
sub-domain borders. White cells denote unconnected vertices.
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4. Evaluation

4.1. Subjects

All data were acquired from eyes imaged at the ophthalmology clinic at the New England Eye
Center at Tufts Medical Center (Boston, MA). The study was approved by the institutional
review boards at the Massachusetts Institute of Technology and Tufts Medical Center, and written
informed consent was obtained from all subjects. The research adhered to the Declaration of
Helsinki and the Health Insurance Portability and Accountability Act. All subjects underwent a
complete ophthalmic examination at the New England Eye Center, and patients with GA or CNV
secondary to AMD were retrospectively identified. In total, 13 eyes (8 with GA, 5 with CNV)
were identified for analysis (Table 1).

Table 1. Description of the datasets used to evaluate our proposed user-assisted Bruch’s
membrane segmentation algorithm. All cases are 6 mm × 6 mm volumes. Superscripts * and §

indicate eyes of the same patient (i.e., OD/OS).

Geographic Atrophy Choroidal Neovascularization

Case Lesion area [mm2] Age [years] Case Lesion area [mm2] Age [years]

G1 0.05 73 C1 5.58 83

G2* 5.70 70 C2 0.52 75

G3* 6.20 70 C3 4.55 65

G4 7.30 72 C4 2.29 56

G5§ 0.62 86 C5 2.00 63

G6§ 3.20 86

G7 2.10 75

G8 2.00 80

4.2. OCT imaging and data processing

All images were acquired using a 400 kHz prototype SS-OCT system operating at a center
wavelength of 1050 nm [28]. The full-width-at-half-maximum axial and transverse resolutions in
tissue were ∼9 µm and ∼20 µm, respectively. The incident power on the cornea was ∼1.8mW.

OCT volumes were acquired over a 6mm × 6mm fields-of-view. A single volume consists of
500 A-scans per B-scan, 5 repeated B-scans per location, and 500 locations per volume, thereby
corresponding to an isotropic ∼12 µm transverse sampling density. After Fourier transformation
of the OCT fringes, the digital axial pixel resolution was ∼4.5 µm. OCT angiography (OCTA)
images were computed using pairwise amplitude decorrelation of the 5 repeated B-scans, where
the interscan time was ∼1.5ms [29]. Because OCT volumes suffer from motion artifacts, in
this study we adopted the approach of Kraus et al., wherein a pair of orthogonally oriented
(“horizontal” and “vertical”) raster volumes are acquired, registered, and merged [30,31]. In
addition to minimizing motion artifacts, volume merging also increases the signal-to-noise ratio.
GA lesion boundaries were manually traced on the basis of OCT hyper-transmission on sub-RPE
slabs formed by projecting the OCT volume from Bruch’s membrane to ∼340 µm posterior to
Bruch’s membrane. OCT B-scans and fundus autofluorescence images were consulted in cases
where the boundaries were unclear. CNV lesion boundaries were computed by manually tracing
the CNV vasculature along the en face planes at each axial depth of the volume, and then taking
the maximum boundary extent over all depths.

4.3. Evaluation metrics

The accuracy of the correction propagation algorithm for segmenting Bruch’s membrane was
evaluated for each of the GA and CNV datasets relative to fully-manual segmentations. In



Research Article Vol. 11, No. 5 / 1 May 2020 / Biomedical Optics Express 2839

particular, for each dataset, a reader (D. S.) drew a set of rectangular correction domains whose
union covered the regions of GA or CNV (Fig. 6 ). The number and dimensions of the correction
domains were selected in order to mimic those that might reasonably be chosen in practice. Four
different correction “densities” were evaluated, thus corresponding to inter-correction spacings of
∆k ∈ {24, 96, 180, 384} µm. That is, a spacing of ∆k corresponds to manual correction of every
(∆k/12)-th B-scan. For each correction density, the mean-absolute-difference (MAD) between
the fully-manual (ground truth) and the user-assisted segmentation was computed. The MAD
between the fully-manual and fully-automatic segmentation was also computed.

4.4. Parameter selection

The parameter ∆B was optimized by using cases G7 and C3, which were selected on the basis
of having the least accurate fully-automatic segmentations. In particular, a grid search for
∆B ∈ {1, 2, 3, 4, 5} was performed. Other parameters were subjectively determined. All tunable
parameters are listed in Appendix II.

5. Results

Computed over the entire field-of-view the MAD ± σMAD between the fully-automatic Bruch’s
membrane segmentations and the fully-manual segmentations was 5.5 ± 6.4 µm for the GA
dataset and 6.9 ± 9.7 µm for the CNV dataset. Considering only the domain of correction, DR̃,
the results of the user-assisted correction propagation are summarized in Fig. 5. The spatial
distribution of the segmentation errors before and after correction propagation are shown in
Fig. 6 for an example of GA and CNV cases.

Fig. 5. Bar chart showing the user-assisted segmentation results for the GA and CNV
datasets evaluated over DR̃; the dashed horizontal line indicates the axial digital (pixel)
resolution, which is half of the axial optical resolution. MAD and σMAD exhibit a monotonic
decrease with an increasing number of corrected B-scans. The first bar of each dataset
illustrates the MAD for the fully-automatic segmentation.
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Fig. 6. Illustration of user-assisted Bruch’s membrane segmentation in an eye with GA
(top row) and an eye with CNV (bottom row). For all panels, propagation correction was
performed with a correction density corresponding to ∆k = 180 µm. Note that, for clarity,
the segmentation lines and B-scans are shown in their natural (unflattened) coordinate
frames. (a) OCT B-scans extracted from the locations of the dashed lines in column-b and
column-c. For each panel, the teal contour corresponds to the automatically segmented
internal limiting membrane; the orange contour corresponds to the automatically segmented
RPE; and the green lines correspond to the manually segmented (ground truth) Bruch’s
membrane. In the panels labelled “Fully-Automatic,” the red contours correspond to the
fully-automatic Bruch’s membrane segmentation. In panels labelled “User-Assisted,” the red
contours correspond to the user-assisted segmentation achieved via correction propagation.
(b) Signed-difference maps between the fully-automatic segmentations and fully-manual
segmentations. (c) Signed-difference maps between the user-assisted segmentations and
the fully-manual segmentations. The dark-green contours in the panels of column-b and
column-c correspond to lesion boundaries. The black rectangles in the panels of column-b
and column-c correspond to the domains of correction, DR̃.
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6. Discussion

This work presents a general framework for user-assisted segmentation via correction propagation.
The utility of this framework is illustrated by correcting the Bruch’s membrane segmentation in
a small case series of eyes with GA and CNV. The evaluation demonstrates that segmentation
accuracies can be substantially improved by correcting segmentations in only a subset of B-scans
within the regions of error—in this study, the areas underlying regions of GA and CNV.

As noted in Section 3, one of the contexts in which accurate segmentation of Bruch’s membrane
is required is in OCTA-based assessment of the choriocapillaris. Thus, it is interesting to examine
the impact of user-assisted segmentation with respect to this application. Figure 7 shows example
en face OCTA images of the choriocapillaris that correspond to the same GA and CNV eyes
of Fig. 6. These en face OCTA images were formed by median projection of their respective
OCTA volumes from Bruch’s membrane to 25 µm posterior to Bruch’s membrane. The most
notable differences between the fully-automatic and user-assisted segmentations occur within the
regions of GA and CNV. In the region of GA, the fully-automatic segmentation is posteriorly
shifted relative to the fully-manual (and user-assisted) segmentations, which results in erroneous
inclusions of larger choroidal vasculature. In the region of CNV, the fully-automatic segmentation
is anteriorly shifted relative to the fully-manual (and user-assisted) segmentations, which results
in both erroneous exclusions of CC vasculature and erroneous inclusions of CNV vasculature.
Although not the motivation for this work, another important application of accurate Bruch’s
membrane segmentation is in the detection, visualization, and analysis of CNV vasculature.
An example of the effect of user-assisted segmentation correction on the visualization of CNV
vascular patterning is given in Fig. 8. In future studies, we expect to evaluate the impact of
user-assisted segmentation in the detection of sub-clinical CNV in asymptomatic eyes with
intermediate AMD, the presence of which confers a marked increase in exudation risk [32,33].

In this work, we opted to use the approach of constraining the correction propagation to within
a user-defined domain. Our doing so was largely motivated by our observation that, very often,
the automatic segmentation was accurate except within regions of severe pathology. Thus, by
constraining the correction, we eliminate the risk of erroneously adjusting the already correct
regions outside the areas of pathology. The cost of using a constrained domain of correction
is relatively small, since bounding boxes (or other regions) can be rapidly defined on en face
images. In cases where segmentation errors are caused by a large number of distributed lesions,
such as drusen, defining the domains of correction that bound each lesion becomes impractical.
However, in this case, the domain of correction can simply be taken as the entire field-of-view,
and the algorithm reverts to the domain-free approach. Another potential situation in which the
domain approach becomes ineffective is when the lesions disrupting the segmentation are not
well visualized in a single en face projection without accurate segmentation, thereby complicating
the process of defining the domain(s) of correction. Small drusen on a curved retina are such
a feature. One possible approach for such lesions is to draw the domains of correction using
an ortho-plane viewer, though this increases the time and complexity of the analysis. Another
approach is, as before, simply to take the domain of correction to be the entire field-of-view.

Our decision to use a constrained graph-cut method to propagate the user corrections results in
limitations related to how the correction information is propagated to other regions of the volume.
Specifically, the effect that correcting one B-scan has on the re-segmentation of B-scans far away
from that corrected B-scan can be quite weak. This is particularly true when regions without
pathology that have been correctly automatically segmented separate two lesions with incorrect
automatic segmentations. Consequently, if this strategy were used to correct segmentation errors
caused by distributed, discrete lesions, such as drusen, it would likely be necessary to have at least
one corrected B-scan passing through each drusen. In cases where there are tens-to-hundreds of
drusen, this can become unwieldy, thus requiring almost every B-scan to be corrected. Adaptive
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Fig. 7. Effect of user-assisted segmentation on choriocapillaris OCTA slabs. The panels
of the top row correspond to the full 6 mm × 6 mm fields-of-view, and the panels of
the bottom row correspond to enlargements of those of the top row. All en face OCTA
slabs were formed via median projection of the OCTA volume from Bruch’s membrane to
∼25 µm immediately posterior to Bruch’s membrane. Lesion boundaries are outlined in
teal. User-assisted segmentation was performed as described in Fig. 6. (a) Choriocapillaris
OCTA slab of an eye with GA (same as in Fig. 6) generated by using a fully-automatic
segmentation. (b) Choriocapillaris OCTA slab of the same GA eye generated by using the
user-assisted segmentation. (c) Choriocapillaris OCTA slab of an eye with CNV (same as
in Fig. 6) generated by using a fully-automatic segmentation. (d) Choriocapillaris OCTA
slab of the same CNV eye generated by using the user-assisted segmentation. Comparing
panel-a and panel-b, the dominant effect of the user-assisted segmentation is a reduced
appearance of larger choroidal vasculature within the region of atrophy (e.g., yellow arrow
within teal outline). This reduction is a consequence of the fully-automatic segmentation
being posteriorly shifted relative to the fully-manual (and user-asssisted) segmentation,
as illustrated in Fig. 6. Even beyond the GA margin, the choriocapillaris OCTA signal
appears lower with the user-assisted segmentation than with the fully-automatic segmentation
(e.g., yellow arrow beyond teal outline). Comparing panel-c and panel-d, the user-assisted
segmentation results in a finer CC/CNV patterning, which, again, is particularly noticeable
within the lesion margins. In some regions, the user-assisted segmentation results in higher
choriocapillaris OCTA signals (e.g., red arrows); in others, the user-assisted segmentation
results in lower choriocapillaris OCTA signals (e.g., yellow arrow).

approaches, for example those that might learn graph-cut weights or other parameters based on
the user corrections, may potentially to avoid or reduce such drawbacks.
For each volume, manual segmentation of one layer (e.g., Bruch’s membrane) took ∼ 150

minutes (∼ 18 seconds per B-scan), whereas automatic segmentation of three layers (ILM,
RPE, and Bruch’s membrane) took ∼ 3 minutes. When considering the time-savings of our
user-assisted approach, it is important to note that the savings are inversely proportional to ∆k.
For example, with ∆k = 12 µm, every B-scan would require manual correction, resulting in
no time-savings; for ∆k = 384 µm, every 32-nd B-scan would require manual correction, thus
resulting in ∼ 1/32 of the fully-manual segmentation time (plus 3 minutes for the initial automatic
segmentation).
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Fig. 8. Effect of user-assisted segmentation on visualization of CNV lesion. User-assisted
segmentation was performed as described in Fig. 6). All en face OCTA slabs were formed
via mean projection of the OCTA volume from the automatically segmented RPE to the
Bruch’s membrane, and therefore correspond to the type-I lesion component. (a) CNV
OCTA slab generated by using a fully-automatic segmentation. (b) CNV OCTA slab of
the same CNV eye generated by using the user-assisted correction. (c, d) Enlargements of
panel-a and panel-b, respectively. When comparing panel-c and panel-d, several regions that
appear vessel-free with the fully-automatic segmentation show vessels with the user-assisted
segmentation (e.g., red arrows).

This study has several limitations. First, the number of evaluated cases was small, thereby
limiting the extrapolation of our results to larger, more varied patient cohorts. Second, our
OCT data were volumetrically motion-corrected, thereby resulting in a continuous Bruch’s
membrane in both of the transverse directions. OCT data generated with other motion-correction
strategies, such as eye-tracking, may generate data with axial discontinuities along the eB direction.
Such discontinuities require more relaxed graph restrictions (i.e., a larger ∆B), thus potentially
necessitating denser B-scan corrections. Similarly, for OCT data that are not motion-corrected,
eye motion, either in the axial or transverse directions, would result in discontinuities in Bruch’s
membrane and would require a more relaxed graph restriction. Fortunately, all commercial
OCTA instruments use some form of motion-correction. Relaxation of the graph restriction
would also be required in other contexts. In particular, in this study we only evaluated the
performance of our correction propagation algorithm in segmenting Bruch’s membrane. While
Bruch’s membrane segmentation can be challenging, in that is not always well visualized on
OCT, it has the advantage that it is relatively continuous, even in regions of pathology. This
contrasts with other layers, such as the RPE, which can undergo sharp deformations. Further
studies are needed to understand how our proposed methods would extend to such layers.

7. Conclusion and outlook

Thiswork presents a general user-assisted segmentation scheme that utilizes correction propagation
to reduce the labor of correcting automatic segmentations of volumetric OCT data. A particular
instantiation of this framework is provided in the form of a graph-cut-based correction propagation
algorithm for correcting segmentations of Bruch’s membrane. The efficacy of this algorithm
is evaluated in a small case series of eyes with GA and CNV. Examples of the impact of our
proposed algorithm on OCTA-based assessment of the choriocapillaris are also provided.
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Appendix I.

Table 2. Mathematical notation sorted by occurrence in the manuscript.

V Motion-corrected OCT volume D Set whose elements index the OCT volume

I, J,K Sets whose elements index the axial, A-scan, and
B-scan dimensions of the OCT volume

NP Number of pixels per A-scan

NA Number of A-scans per B-scan NB Number of B-scans per OCT volume

eP, eA, eB Basis vectors pointed along the axial, A- and B-scan
directions

(σfi ,σfj ) Standard-deviations of Gaussian filter

c Index of the central B-scan d Degree of flattening polynomial

γx
e d-th degree polynomial of a variable indexing the

axis oriented parallel to e and coincident with the
x-th B-scan

∆e Half-size of search space along e

PRPE
k Set of points/vertices of the RPE graph for the k-th

B-scan
ERPEk Set of edges of the RPE graph for the k-th B-scan

wRPE
k Set of weights of the RPE graph for the k-th B-scan GRPE

k The RPE graph for the k-th B-scan

pi,j Point/vertex coincident with volume element Vi,j,k NRPE(pi,j) Set of edges connected to point/vertex pi,j

VRPE Bilaterally-filtered OCT volume (σs,σr) Spatial and range parameters of bilateral filter

ei,j,m,n Edge between pi,j and pm,n ε Small, positive number

f Denotes that a volume is flattened with respect to
RPE

SRPE,f RPE segmentation of a flattened volume

∆min Convergence criteria of BM convex hull
approximation

rmse(x, y) Root-mean-square-error between vector x and y

meanf(x, z) Mean filtering of vector x with a kernel of width z max(x, y) Element-wise maximum operation of vectors x and y

ashift(x, z) Translation of elements of the vector x by a distance z
along the eP direction

SBM,f Bruch’s membrane segmentation of a flattened
volume

DR̃ Subset of D, to which the correction propagation is
restricted

nl, nr , nt , nb Indices of the left, right, top, and bottom borders of
DR̃

SC̃BM,f Partial correction of the automatic Bruch’s
membrane segmentation

P
BM,R̃
k Set of points/vertices of the partially restricted

Bruch’s membrane graph for the k-th B-scan

E
BM,R̃
k Set of edges of the partially restricted Bruch’s

membrane graph for the k-th B-scan
wBM,R̃

k Set of weights of the partially restricted Bruch’s
membrane graph for the k-th B-scan

G
BM,R̃
k Partially restricted Bruch’s membrane graph for the

k-th B-scan
VBM Filtered OCT volume for Bruch’s membrane

segmentation

Q Kernel used to filter each OCT B-scan prior to
segmentation of Bruch’s membrane

X ∗ Q Convolution of matrix X with filter kernel Q

sgn(·) sign/signum function X ◦ Y Hadamard product of X and Y

P
BM,R
k Set of points/vertices of the fully restricted Bruch’s

membrane graph for the k-th B-scan
E
BM,R
k Set of edges of the fully restricted Bruch’s membrane

graph for the k-th B-scan

wBM,R
k Set of weights of the fully restricted Bruch’s

membrane graph for the k-th B-scan
G
BM,R
k The fully restricted Bruch’s membrane graph for the

k-th B-scan

L(·) Linear interpolation function b ·e Round to nearest integer

T(·) Thickness function SCBM,f Corrected Bruch’s membrane segmentation of
flattened OCT volume

SCBM Corrected Bruch’s membrane segmentation of
unflattened OCT volume

∆k Spacing of manually corrected B-scans

MAD (x, y) Mean average (element-wise) distance between
vectors x and y

σMAD Standard deviation of MAD
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Appendix II.

Please note that the parameters used in this study were determined by a grid-search on our data
and may need to be adapted for different OCT devices and/or volume resolutions. Note also that
the OCT volumes of this study had a digital resolution of 12 µm×12 µm×4.5 µm. Parameters that
are dependent on the digital resolutions of the OCT volumes are marked with a (*).

σfi (*) = 4 pixels (18 µm)

σfj (*) = 2 pixels (24 µm)

σs(*) = 5 pixels (22.5 µm axial; 60 µm transverse)

σr = 5

d = 3

Q = [[1,−1]T , [1,−1]T , [1,−1]T ]

ε = 0.001

MAXITER = 50

hm(*) = 50 pixels (600 µm)

RELAXSTEP = 1

∆eA (*) = 2 pixels (9 µm)

∆BM(*) = 4 pixels (18 µm)

∆min = 0.05

∆B(*) =

{
3 pixels (12.5 µm) , if ∆k ≥ 15
1 pixel (4.5 µm) , otherwise
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Appendix III.

Algorithm 1: Segmentation of Bruch’s membrane via iterative relaxation of the RPE
segmentation. See Appendix I for variable and function definitions, and Appendix II for
the particular parameter values used in this study.
Input :SRPE,f

Output :SBM,f

Parameters :MAXITER, FILTWIDTH = hm,
RELAXSTEP, BMSHIFT = ∆BM, ∆min

1 for k = 0; k < NB; k = k + 1 do
2 shiftedRPESeg = ashift

(
SRPE,f

��
K={k} , RELAXSTEP

)
3 BMSeg = shiftedRPESeg
4 i = 1; ∆ = ∞
5 while i < MAXITER and ∆>∆min do
6 prevBMSeg = BMSeg
7 BMSeg = meanf (BMSeg, FILTWIDTH)
8 BMSeg = max (BMSeg, shiftedRPE)
9 ∆ = rmse (BMSeg, prevBMSeg)

10 i = i + 1
11 end
12 SBM,f

��
K={k} = meanf (BMSeg, FILTWIDTH);

13 SBM,f
��
K={k} = ashift

(
SBM,f

��
K={k} , BMSHIFT

)
14 end
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